£ృ๐ I
$30 \times 10^{+} \mathrm{N}-\mathrm{m}$. The permissible stress for the material of the shaft and hub is 120 MPa . The
coefficient of friction is 0.18 . Determine:
i) The contact pressure
ii) Interference required
iii) The tangential stress at the inner and outer surface of the hub.
iv) Force required to assemble
v) Radial stress at the outer and inner diameter of the hub.
(14 Marks) $30 \times 10^{+} \mathrm{N}-\mathrm{m}$. The permissible stress for the material of the shaft and hub is 120 MPa . The

 In an air operated press, the piston rod of the operating cylinder must exert a force of

the cross section of the crane hook. (15 Marks) fibre is 150 mm as shown is the Fig.Q1(b). Determine the stresses at the extreme fibres of The parallel sides of a trapezoidal cross section of a crane hook of capacity 50 kN are 100
 $\overline{\mathrm{V} \text {-LyVd }}$

Design of Machine Elements - II

Max. Marks: 100

i) Tensions is the band ii) The actuating force iii) Torque capacity of the brake. (10 Marks)

 $\overline{\mathrm{g}-\text { LEVV }}$

Чю00, леәธิ әппן

 (s, HEW 90)

193W90
06ME61
7 a. Explain the properties a good bearing material should posses. List the different types of
a. Explain the properties a good bearing material should posses. List the different types of
bearing materials.
($\mathbf{0 6}$ Marks)
The following data
Radial load: 25 kN
Unit bearing pressure: 2.5 MPa
Viscosity of the lubricant: 20 Cp .
Class of fit: H7 e7
Calculate:
i) Dimensions of the bearing
ii)
ii) Minimum oil film thickness
Assume that the process to clearance is centered. (14 Marks)
Assume that the process to clearance is centered.
a. Explain the advantages and applications of chain drives.
The layout of the leather belt drive transmitting 15 kW power is shown in Fig.Q8(b). The
operate at a velocity of $20 \mathrm{~m} / \mathrm{sec}$ and the stresses in the belt should not exceed 2.25 MPa
The density of the leather belt is $0.95 \mathrm{~g} / \mathrm{cc}$ and the coefficient of friction is 0.35 . The
Calculate
i) Diameter of the pulleys
i)
ii) The length and width belts.
ii) Belt tensions.

06ME662

Sixth Semester B.E. Degree Examination, June 2012 Mechanics of Composite Materials

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Briefly describe the classification of composites.
(10 Marks)
b. List and explain the properties and applications of : i) Glass fibers and
ii) Carbon fibers.
(10 Marks)
2 With suitable sketches, explain the following methods of manufacturing PMC's :
a. Hand lay - up
b. Filament winding
c. Pultrusion
d. Prepregs.
(20 Marks)
3 a. List the characteristics of FRP's that are of significance for marine applications.
(05 Marks)
b. Discuss the future potential of PMC's.
(05 Marks)
c. Briefly explain the applications of PMC's in the following industries :
i) Electrical and electronics
ii) Automobile.
(10 Marks)
4 a. What is laminate? Describe in brief.
(05 Marks)
b. A thermoplastic matrix contains $40 \mathrm{wt} \%$ glass fiber. If the density of the matrix ρ_{m} is $1.1 \mathrm{gr} / \mathrm{cc}$ while that of glass fiber ρ_{f} is $2.5 \mathrm{gr} / \mathrm{cc}$, what is the density of the composite? Assume that no voids are present and mass of composite $=100 \mathrm{gr}$.
(05 Marks)
c. Write generalized Hooke's law in matrix form. Deduce the stiffness matrix and compliance matrix for a lamina from generalized Hooke's law.
(10 Marks)

PART - B

5 a. What is lamination theory? Describe with a sketch of laminate stacking sequence code.
b. Discuss the interlaminar stresses and edge effects in a laminate.
(10 Marks)
6 a. Highlight the advantages and draw backs of MMCs over PMCs.
(06 Marks)
b. Write a note on titanium matrix alloy used in MMCs.
(06 Marks)
c. Briefly describe automotive applications of Aluminum matrix MMCs.

7 With suitable sketches, briefly explain the following processing techniques used in MMCs :
a. Pressure infiltration technique.
b. Powder metallurgy technique.
(20 Marks)
8 Discuss the effect of SiC particulate concentration (\% volume fraction) on the following properties of $\mathrm{Al}-\mathrm{SiC}$ MMC.
a. Strength.
b. Coefficient of thermal expansion.
c. Ductivity.
d. Modulus of elasticity.
£ 10

06ME62 From the first principles show that the general solution for torsional vibration of circular From the first
shaft can be obtained as:
$\theta=\sum_{i, 2,3}^{c}\left(A_{i} \sin \frac{W_{i} x}{c}+B_{i} \cos \frac{W_{i} x}{c}\right)\left(C_{i} \sin W_{i} t+D_{i} \cos W_{i} t\right)$. where, $C=\sqrt{\frac{G}{\rho}}$解 8 a. Using stodola method find the fundamental natural frequency and mode shape of the system
shown in Fig.Q8(a). $\frac{5 k}{m}$

Assume $\mathrm{k}=1 \mathrm{~N} / \mathrm{m}$
And $\mathrm{m}=1 \mathrm{~kg}$.
(10 Marks)
(10 Marks)

Fig.Q8(b)

06ME63
Sixth Semester B.E. Degree Examination, June 2012 Modelling and Finite Element Analysis

Time: 3 hrs.
Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART-A

1 a. Differentiate between plane stress and plane strain problems. Also state the stress-strain relations for both.
(05 Marks)
b. State the principle of minimum (stationary) potential energy and apply the same to determine nodal displacement of the spring system shown in Fig.Q1(b).
(10 Marks)

$$
\begin{aligned}
& \mathrm{k}_{1}=50 \mathrm{~N} / \mathrm{mm} \\
& \mathrm{k}_{2}=\mathrm{k}_{3}=60 \mathrm{~N} / \mathrm{mm} \\
& \mathrm{k}_{4}=80 \mathrm{~N} / \mathrm{mm} \\
& \mathrm{~F}_{1}=100 \mathrm{~N}, \mathrm{~F}_{2}=150 \mathrm{~N}, \mathrm{~F}_{3}=200 \mathrm{~N},
\end{aligned}
$$

Fig.Q1(b)
c. Evaluate the following integral using two point Gauss quadrature formula.

$$
I=\int_{1}^{3}\left(\frac{1}{x}\right) d x
$$

(05 Marks)

2 a. What is FEM? What are the advantages and limitations of the method?
(08 Marks)
b. Derive the element stiffness matrix of linear bar element and list the properties of stiffness matrix.
(12 Marks)
3 a. What do you understand by C° and C^{1} shape functions? State the properties of C° shape functions. Derive shape functions of a 3-noded bar element in natural coordinates. Show the variation of each shape function over the element.
(12 Marks)
b. Discuss the various convergence criteria and geometric isotropy as regards to finite element models.
(08 Marks)
4 a. What do you understand by Hermitian shape functions? Derive Hermite shape functions of a beam element and show the variation of the shape functions over the element. (10 Marks)
b. Explain the sub-super and isoparametric finite elements.
(05 Marks)
c. Write a note on higher order elements used in FEM.
(05 Marks)

PART - B

5 a. Derive a stiffness matrix for 2D truss element.
(10 Marks)
b. Derive strain-displacement $[\mathrm{B}]$ matrix for a 3-noded CST element.
(10 Marks)
6 a. Write a note on application of FEM in solving scalar field problems.
(04 Marks)
b. Write the governing differential equations for one dimensional heat transfer and discuss the various types of boundary conditions used in solving heat transfer problems.
(06 Marks)
c. Derive element conductivity matrix for one dimensional heat flow element.
(10 Marks)

7 a. Determine the nodal displacement at node 2, the stresses in the elements at support reactions for the stepped bar shown in Fig.Q7(a).
(10 Marks)

Fig.Q7(a)
b. For the truss element shown in Fig.Q7(b), (x, y) co-ordinates of the element are indicated near nodes 1,2 . The element displacement dof vector is given by
$\{u\}=\left[\begin{array}{llll}1.5 & 1.0 & 2.1 & 4.3\end{array}\right]^{\mathrm{T}} \times 10^{-2} \mathrm{~mm}$. Take $\mathrm{E}=300 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{~A}=100 \mathrm{~mm}^{2}$, determine the following:
i) Element displacement dof in local coordinates $\left(\mathbf{u}_{1}{ }^{1} \& \mathbf{u}_{2}{ }^{1}\right)$
ii) Stress in the element
iii) Stiffness-matrix of the element.
(10 Marks)

8 a. For the brick wall shown in Fig.Q8(a), the inner surface temperature is $28^{\circ} \mathrm{C}$ and outer surface is exposed to cold air at $-15^{\circ} \mathrm{C}$. Determine the temperature distribution in steady state, within the wall, by considering 2 elements, one dimensional heat flow elements. What is heat flux through the wall?
(10 Marks)

b. For the beam fixed at both ends and loaded as shown in Fig.Q8(b), determine the displacement and slopes at node 2 , and reaction force at node 1 only.
(10 Marks)

Fig.Q8(b)

06ME64

Sixth Semester B.E. Degree Examination, June 2012 Mechatronics and Microprocessors

Time: 3 hrs.
Max. Marks: 100
Note: Answer FIVE full questions, selecting
at least TWO questions from each part.

PART-A

1 a. Explain the meaning of the term "Mechatronics" with respect to multi-disciplinary scenario. Briefly discuss the origin and evolution of Mechatronics.
(07 Marks)
b. Briefly explain the concept of system development in Mechatronics and functions of main elements in Mechatronics system (closed loop control system) with figure.
(07 Marks)
c. What are micro-processor based controllers? Briefly explain the principle of working of any one of the following with figure: i) Automatic camera \quad ii) Engine management system.
(06 Marks)
2 a. What is a sensor and how are they classified? What are the different types of sensors?
(06 Marks)
b. Briefly explain the various static and dynamic characteristics of sensors. (06 Marks)
c. Briefly explain the principle of working and applications of any two of the following sensors:
i) Light sensors
ii) Pronimity sensors
iii) Hall effect sensor
(08 Marks)

3 a. Briefly explain the working principle of a stepper motor. Draw the T- θ characteristic curve of a 3ϕ variable - reluctance (VR) type of a stepper motor and then predict stable and unstable position of the rotor.
(10 Marks)
b. Explain the basic construction of DC motors. Explain field and armature speed control of DC motors.
(10 Marks)
4 a. Draw the circuit diagram of op-amp integrator, differentiator and derive an expression of an output voltage.
(06 Marks)
b. Explain balance mode of wheat stone bridge and hence deduce the expression for change in output voltage.
(08 Marks)
c. With bock diagram, explain digital data acquisition system.
(06 Marks)

PART - B

5 a. Implement a NOT, OR and AND gates using NOR gates. Also mention their truth tables.
(08 Marks)
b. Convert the following: i) $(754.534)_{10}=(\square)_{16}$
ii) $(110.10101)_{2}=(\quad)_{10}$

$$
\text { iii) }(327.45)_{8}=(\square)_{10}
$$

(06 Marks)
c. State Demorgan's theorems. Also draw the logic circuits for the same. (06 Marks)

6 a. Explain the following terminologies of a 8085 microprocessor:
i) Program counter
ii) Assembler
iii) ALU
iv) Fetch cycle
v) BUS
b. State any five differences between a microprocessor and a microcontroller.
(05 Marks)
c. Give the classification of microcontrollers.
(05 Marks)
7 a. Explain the architecture of 8085 microprocessor with neat block diagram. ($\mathbf{1 0}$ Marks)
b. Write a program to find the largest of a byte in the array of numbers. (10 Marks)

8 a. Explain the flow of instruction and data in the 8085 microprocessor. (07 Marks)
b. Draw and explain the timing diagram of opcode fetch machine cycle.
(10 Marks)
c. List the differences of 4004 and 8085 microprocessors register organization.
(03 Marks)

06ME65

Sixth Semester B.E. Degree Examination, June 2012 Heat and Mass Transfer

Time: 3 hrs .
Max. Marks: 100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part. 2.Use of heat transfer data handbook is permitted.

PART - A

1 a. What do you mean by boundary condition of $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ kind?
(06 Marks)
b. Derive general heat conduction equation in cartesion co-ordinates.
(08 Marks)
c. A 0.8 m high and 1.5 m wide double plane window consists of two 4 mm thick layers of glass $\left(\mathrm{k}=78 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}\right)$, separated by a 10 mm wide stagnant air space $\left(\mathrm{k}=0.026 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}\right)$. Determine the rate of heat transfer through this window and the temperature of the inside surface, when the room is maintained at $20{ }^{\circ} \mathrm{C}$ and the outside air is at $-10{ }^{\circ} \mathrm{C}$. Take the convention heat transfer co-efficients on the inside and outside surfaces of the window as 10 and $40 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$ respectively.
(06 Marks)
2 a. What is physical significance of critical thickness of insulation? Derive an expression for critical thickness of insulation for a cylinder.
(06 Marks)
b. Derive an expression for temperature distribution for a pin fin with the tip insulated.
(08 Marks)
c. A carbon steel $\left(\mathrm{k}=54 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}\right)$ rod with a cross section of an equilateral triangle (each side 5 mm) is 80 mm long. It is attached to a plane wall which is maintained at a temperature of $400{ }^{\circ} \mathrm{C}$. The surrounding environment is at a $50{ }^{\circ} \mathrm{C}$ and unit surface conductance is $90 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$. Compute the heat dissipated by the rod (assuming tip is insulated). (06 Marks)

3 a. What are Biot and Fourier numbers? Explain their physical significance.
(06 Marks)
b. Obtain an expression for instantaneous heat transfer and total heat transfer for lumped heat analysis treatment heat conduction problems.
(08 Marks)
c. A solid copper sphere of 10 cms dia [density $8954 \mathrm{~kg} / \mathrm{m}^{3}$, specific heat $383 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$, thermal conductivity $\left.386 \mathrm{~W} /{ }^{\circ} \mathrm{C}\right]$ initially at a uniform temp $\mathrm{t}_{\mathrm{i}}=250{ }^{\circ} \mathrm{C}$ is suddenly immersed in a well stirred fluid which is maintained at a uniform temperature $\mathrm{t}_{\mathrm{a}}=50^{\circ} \mathrm{C}$, the heat transfer co-efficient between the sphere and the fluid is $200 \mathrm{~W} / \mathrm{m}^{2^{\circ}} \mathrm{C}$. Determine the temperature of the copper block at 5 minutes after the immersion.
(06 Marks)
4 a. With reference to fluid flow over a flat plate, discuss the concepts of velocity boundary layer and thermal boundary layer, with necessary sketches.
(06 Marks)
b. Air at $27^{\circ} \mathrm{C}$ and at atmospheric pressure flows over a flat plate at a speed of $2 \mathrm{~m} / \mathrm{sec}$. If the plate is maintained at $93^{\circ} \mathrm{C}$, calculate the heat transfer per unit width of the plate, assuming the length of the plate along the flow of air is 2 metres.
(08 Marks)
c. A steam pipe 5 cms diameter is lagged with insulating material of 2.5 cm thick. The surface temperature is $80^{\circ} \mathrm{C}$ and emissivity of the insulating material surface is 0.93 . Find the total heat loss from 10 metre length of pipe considering the heat loss by natural convection and radiation. The temperature of the air surrounding the pipe is $20^{\circ} \mathrm{C}$. Also find the overall heat transfer co-efficient and heat transfer co-efficient of radiation.
(06 Marks)

PART - B

5 a. With the help of dimensional analysis, derive expression for the Reynolds number, Prandtl number and Nusselt number.
(10 Marks)
b. A surface condenser consists of two hundred thin walled circular tubes (each tube is 22.5 mm diameter and 5 m long) arranged in parallel, through which water flows. If the mass flow rate of water through the tube bank is $160 \mathrm{~kg} / \mathrm{sec}$ and its inlet and outlet temp are known to be $21^{\circ} \mathrm{C}$ and $29^{\circ} \mathrm{C}$ respectively, calculate the average heat transfer co-efficient associated with flow of water.
(10 Marks)
6 a. Derive an expression for LMTD for a counter flow heat exchanger.
(10 Marks)
b. The velocity of water flowing through a tube of 2.2 cms diameter is $2 \mathrm{~m} / \mathrm{sec}$. Steam condensing at $150{ }^{\circ} \mathrm{C}$ on the outside surface of the tube heats the water from $15{ }^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ over the length of the tube. Find the heat transfer co-efficient and the length of the tube neglecting the tube and steam side film resistance.
(10 Marks)
7 a. Clearly explain the regions of pool boiling with neat sketch.
(06 Marks)
b. State Fick's law of diffusion. What are its limitations?
(06 Marks)
c. A vertical square plate ($30 \mathrm{cms} \times 30 \mathrm{cms}$) is exposed to steam at atmospheric pressure. The plate temp is maintained at $98^{\circ} \mathrm{C}$. Calculate the heat transfer rate and mass of steam condensed per hour. Take the properties of water film at mean temperature.
Density $=960 \mathrm{~kg} / \mathrm{m}^{3}$
Dynamics viscosity $=282 \times 10^{-6} \mathrm{~kg} / \mathrm{m}$.s
Thermal conductivity $=0.61 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$
Latent heat $=2255 \mathrm{~kJ} / \mathrm{kg}$
Temp of the steam $=100^{\circ} \mathrm{C}$.
(08 Marks)
8 a. Define the following:
i) Black body
ii) Kirchoff's law
iii) Stefan boltzman law.
iv) Wein's displacement law.
v) Plank' law.
(10 Marks)
b. Two large parallel planes having emissivities at 0.3 and 0.5 are maintained at temperature of $800{ }^{\circ} \mathrm{C}$ and $300^{\circ} \mathrm{C}$ respectively. A radiation shield having an emissivity of 0.05 on both sides is placed between the two planes.
Calculate:
i) Heat transfer per unit area without shield.
ii) Find the temperature of the shield and heat transfer per unit area with shield. ($\mathbf{1 0}$ Marks)

Sixth Semester B.E. Degree Examination, June 2012 Non-Traditional Machining

Time: 3 hrs .
Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Give the broad classification of non-traditional machining processes. (06 Marks)
b. What are the advantages of non-traditional machining processes? (06 Marks)
c. With a neat sketch, explain the working principle of ultrasonic machining process. (08 Marks)

2 a. Explain the effect of different process parameters on machining performance in USM process.
(10 Marks)
b. What are the advantages, disadvantages and applications of USM process?
(10 Marks)
3 a. Sketch and explain AJM process.
(10 Marks)
b. During AJM process the mixing ratio is 0.2 . Calculate the mass ratio if the ratio of density of abrasive and density of carrier gas is 20 .
(04 Marks)
c. What are the process variables that affect the performance of water-jet machining process.
(06 Marks)
4 a. With a neat sketch, explain the working principle of ECM process.
(08 Marks)
b. Sketch and explain different types of tools used in ECM process.
(06 Marks)
c. List the advantages, limitations and applications of ECM process.
(06 Marks)

PART - B

5 a. What are Maskants used in chemical machining? Explain the different types of it. (10 Marks)
b. What are the factors to be considered in the selection of etchant?
(04 Marks)
c. List the commonly used dielectric fluids in EDM process. What properties should they posses?
(06 Marks)
6 a. Derive the relationship for breakdown voltage, V_{b} in EDM process, $\left(\mathrm{V}_{\mathrm{b}} \approx 0.72 \mathrm{~V}_{\mathrm{o}}\right)$, where V_{o} is the supply voltage.
(12 Marks)
b. Sketch and explain ECG process.
(08 Marks)
7 a. Sketch and explain transferred and non-transferred plasma arc system.
(10 Marks)
b. Write a note on process performance in plasma arc cutting process.
(04 Marks)
c. Write a note on different types of lasers used in LBM process.
(06 Marks)
8 a. What are the advantages and applications of laser beam machining?
(08 Marks)
b. Sketch and explain electro beam machining process.
(08 Marks)
c. What are the process parameters affect on the machining process in EBM?
(04 Marks)

Sixth Semester B.E. Degree Examination, December 2011 Statistical Quality Control

Time: 3 hrs .
Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting atleast TWO questions from each part.
 2. Use of SQC tables is permitted.

PART - A

1 a. State and explain SQC. Discuss the major benefits of SQC.
(08 Marks)
b. Briefly explain the quality costs and state their inter- relationship using a suitable graph.
(12 Marks)
2 a. Discuss standard normal deviation using the normal distribution table and the normal curve.
(04 Marks)
b. Find the area under the normal curve between
i) $\mu-\sigma$ to $\mu+\sigma$
ii) $\mu-2 \sigma$ to $\mu+2 \sigma$
iii) $\mu-3 \sigma$ to $\mu+3 \sigma$.
(10 Marks)
c. Explain clearly central limit theorem.
(06 Marks)
3 a. Distribution between chance causes and assignable causes.
(06 Marks)
b. Discuss clearly the statistical basis for the control charts and mention uses of control charts.
(08 Marks)
c. Explain the following :
i) Warning limits
ii) Average run length (ARL).
(06 Marks)
4 a. Clearly differentiate between TYPE I and TYPE II errors.
(08 Marks)
b. Control charts for $\overline{\mathrm{X}}$ and R are maintained on a certain quality characteristic. A subgroup size of 5 is selected. For 25 sub groups, $\Sigma \overline{\mathrm{X}}=514.8$ and $\Sigma \mathrm{R}=120$. Compute the values of 3σ limits for the $\overline{\mathrm{X}}$ and the R charts and estimate the value of σ^{1} on the assumption that the process is in statistical control.
(12 Marks)

PART - B

5 a. State and discuss the importance of process capability.
(04 Marks)
b. Subgroups of 5 items each from a manufacturing process are taken. A certain quality characteristic is measured. $\overline{\mathrm{X}}$ and R values are computed for each sub group. After 25 subgroups, $\Sigma \overline{\mathrm{X}}=357.50$ and $\Sigma \mathrm{R}=8.8$. Compute the control chart limits. All points on both charts fall within these limits. If the specification limits are 14.40 ± 0.40, what conclusions can you draw about the ability of the existing process? Suggest the possible ways in which the sitnation could be controlled.
(16 Marks)

6 a. Distinguish between a P-chart and a C-chart and comment on their usability.
(06 Marks)
b. The table below shows the number of defects per lot in 15 successive lots of 5 electronic calculators. Plot the control chart based on this data. In case, the reasons for out of control points are known and can be eliminated, what upper control limit should be suggested for the future production?

7 a. Briefly explain double sampling plan using a flow chart.
(05 Marks)
b. Construct the OC curve for a single sampling plan, $\mathrm{n}=300$ and $\mathrm{c}=5$. Find AQL and LTPD when $\alpha=5 \%$ and $\beta=10 \%$. Also calculate AOQ values and indicate AOQL, with suitable diagram.

8 a. Discuss the basic principles of the 'cusum' control chart for maintaining the process mean.
b. Explain an 'EWMA control chart' for monitoring the process mean.
(10 Marks)
(
(10 Marks)
iii) The value of switch expression must be of type \qquad

A) Real
B) int
C) double
D) All of these
iv) The least number of times the do - while loop will be executed is \qquad .
A) 0
B) 1
C) 2
D) Both A and B
b. Distinguish between while and do-while statement.
(08 Marks)
c. Write a C program to read a positive number and reverse the given number. (08 Marks)
7. a. Select the correct answer :
(04 Marks)
i) Number of elements in an array defined by a [3] [4] is
A) 8
B) 12
C) 16
D) None of these
ii) If $\chi[4]$ is a declaration, then the first and last array index will be
A) 1,4
B) 0,3
C) 3,0
D) None of these
iii) Given int a [3] [2] $=\{1,2,3,4,5,6\}$; the element in the $3^{\text {rd }}$ row and $2^{\text {nd }}$ column is \qquad B) 6
C) 52
D) 4
iv) A function that is used to join two strings is \qquad
A) Strepy
B) Strlen
C) Streat
D) Stremp
b. Explain the declaration and initialization of one dimensional array with examples.
c. Write a C program to input N integers into a single dimensional array and sort them in descending order using bubble sort method. Print both given array and sorted array with suitable headings.
8. a. Select the correct answer :
(04 Marks)
i) \qquad execution of instryctions in a computer system is referred to as parallel computing.
A) Serial
B) Sequential
C) Accurate
D) Simultaneous
ii) Which of the following can be used as a resource in parallel computing?
A) A single computer with multiple processors.
B) An arbitrary number of computers connected by a network.
C) A combination of the above.
D) All of these.
iii) Open Mp stands for
A) Open multi - parallelism
B) Organised multi - programming
C) Open multi - processing
D) Organised multi - parallelism.
iv) An example of environment variable in OPEN MP is
A) Omp - thread - limit
B) Omp - init - lock
C) Omp - test - lock
D) Omp - get - dynamic.
b. Define concurrent processing. What is the motivation for concurrent processing?
(10 Marks)
c. What are threads? Give the advantages and disadvantages of multiple threads.
(06 Marks)

